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Abstraet--A microscopic thermal model for dry sliding contact that accounts for a volume generation of 
the friction heat is proposed. A numerical procedure that allows the determination of the two parameters 

and R~I of macroscopic thermal models for dry sliding contact is given. The results are compared in the 
case of a simple contact geometry, with an analytical solution for ~ and R,~. The influences of the microscopic 
parameters, the contact geometry and the velocity on the two macroscopic parameters are shown. Copyright 

© 1996 Elsevier Science Ltd. 

1. INTRODUCTION 

Friction occurs in a lot of mechanisms, like gears, ball 
bearings, in engines, transmission equipments, brakes 
and so on. In sorae cases, the energy dissipation is 
useful, in others it is not. The determination of the 
temperature field of a meChanical system, where fric- 
tion occurs between several parts, is a difficult task 
and has been tackled for many years for engineering 
applications. In the case of non-lubricated contact, 
different macroscopic thermal contact models have 
been proposed for rubbing interfaces. 

At first, it was assumed that the thermal contact is 
perfect [1-4], thus the temperature of both surfaces in 
contact is equal. "[his model is the easiest to use but  is 
limited in applications which do not  need accuracy. In 
other works [5-7], a parti t ion coefficientp is defined ; it 
is assumed that a part, p, of the friction heat, qgg, goes 
into one solid while the remaining part  goes into the 
other solid. This raodel is convenient because the two 
solids are not  coupled and only one parameter, p, 
must be fixed to calculate the whole temperature fields, 
but  the partit ion coefficient must be estimated for each 
particular case, because it depends on the boundary  
conditions, the material properties and the macro- 
scopic geometry of the two contacting solids. 

Actually, perfect contact never exists and, to model 
this situation, a thermal contact resistance is used. 
Figure 1 recalls the definition of the thermal contact 
resistance: when two solids are pressed together the 
unperfectly smooth surfaces limit the real contact to 
small areas (Fig. la). The conductivity of the inter- 
stitial fluid being usually smaller by one or two orders 
of magnitude than the solid conductivities, the tem- 
perature field near the interface is perturbated. Let Rp 
be the thermal resistance for the perfect contact case, 
then with the notat ion of Fig. l b :  

(T2- T'~) 
Rp - (1) 

~o 

If  the same heat flux density ~o goes through the real 
contact then Rt, the thermal resistance for the real 
contact (temperature variation given by the thick 
curve on Fig. lb),  is equal to : 

( : r 2 -  T,) 
R, (2) 

(o 

The static thermal contact resistance represents the 
perturbation induced by the asperities, it is defined as 
the difference between Rt and Rp : 

Rst = R t -  Rp. (3) 

One can also write : 

(02 - 0 1 )  
n,, - (4) 

where 02 and 0j are the extrapolated temperatures 
in the solids 2 and 1, respectively, at the theoretical 
geometric interface. 

Many numerical [8-10] and experimental [11-13] 
works were carried out to determine the thermal resist- 
ance for static contacts in steady [14, 15] and transient 
[16, 17] states. The concept of thermal resistance has 
later been extended to sliding contacts and was exper- 
imentally determined in some particular cases [18, 19]. 

Another  model, introduced by Bardon [20], is based 
on a sliding contact resistance, Rsj and another par- 
ameter, a, called 'heat generation coefficient'. Bar- 
don's  analysis of the contact led to the contact model 
shown in Fig. 2a. The heat flux is generated at the 
contact interface and the asperities are modeled with 
thermal resistances as shown by Fig. 2b:  Ram is the 
solid 1 asperity thermal resistance, Re1 and Rc2 are the 
constriction thermal resistances and Ri the thermal 
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NOMENCLATURE 

a thermal diffusivity [m 2 s-l] 
2b width of asperity [m] 
2B periodicity of asperity [m] 
cp specific heat [J kg -~ K-~] 
f constriction coefficient 
9 fraction of the total friction heat being 

generated in the solid 1 
h thickness of the heat flux generation 

zone [m] 
H height of the asperity [m] 
k conductivity [W m -  l K - 1] 
p friction heat partition coefficient 
r thermal resistance ratio 
R thermal resistance [m 2 K W -  ~] 
T temperature [K] 
V sliding velocity [ms -~] 
V* non-dimensional sliding velocity V* 

= 2BV/a2.  

Greek symbols 
c~ heat generation coefficient 
q~ heat flux density [W m -2] 
0 extrapolated temperature at the 

contact interface [K] 
p density [kg m 3]. 

Subscripts 
a asperity 
g generation 
i interstitial fluid or index 
p perfect contact 
t total 
c constriction 
st static contact 
sl sliding contact 
1 solid 1 
2 solid 2. 
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Fig. 1. Illustration of the thermal contact resistance effect. 
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Fig. 2. Bardon's thermal sliding contact model. 
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resistance due to the interstitial medium. For  most 
cases the constriction resistance is a very local 
phenomenon since l:he ratio of the real contact area 
on the apparent contact area is small and the con- 
ductivity of the interstitial medium is much smaller 
than the solid conductivities. Thus it can be assumed 
that there is no interaction between the constriction 
resistance and the interstitial medium resistance. Bar- 
don proposed replacing this four parameters model 
by the two parameters model shown in Fig. 2c. The 
four resistances are replaced by a single resistance Rst 
and it is assumed that a fraction, ct, of the heat flux 
is generated at the surface of the solid 1 while the 
complementary fraction is generated on the solid 2 
surface. The comparison of the resistance scheme of 
Fig. 2b and c leads [20] to the following expressions 
for Rsl and ct : 

1 1 1 

Rs~ = ]~/,-t- (Rcl + Ra I + Rc2) (5) 

PM2 Rs12 
c~ = (R¢14- Ra, + Rcz) = Rsu + Rs,z" (6) 

Equation (6) shows that, contrary to the partition 
coefficient, p, ~ depends on the interface rugosities and 
thermal properties, on the sliding velocity, but not on 
the external boundary conditions and macroscopic 
geometries. 

Laraqui [21] proposed another macroscopic model 
with asperities on the two contacting surfaces. The 
total height of the asperities is supposed to be 
constant, so R,z+R,~ = R, is constant, but the pos- 
ition of the contact interface is supposed to vary with 
a Gaussian distribution. Since it is also assumed that 
the heat flux is generated at the contact interface, q~g 
follows the same Gaussian distribution as the contact 
interface location. This model also involves two par- 
ameters, Rm and R~, which correspond to the 
maximum and the standard deviation of the Gaussian 
curve, respectively. Except for the perturbated zone, 
the temperature fields calculated by these two last 
models are identical. 

The assumption of heat generated at the interface 
of contact is, to our point of view, not realistic. Our 
analysis, confirmed by many thorough personal com- 
munications with tribologists and physicists, has led 
us to believe that the friction heat generation is a 
volume phenomenon. Heat is generated by two main 
means : adhesion which gives rise directly to heat dis- 
sipation in the first atomic layers of the contacting 
surfaces and elastoplastic deformations which release 
heat in the surrounding contacting volume. The 
importance of the latter depends on the material 
properties, surface roughness, contact pressure and 
velocity. It can represent 5-95% of the friction heat 
[221. 

The first objective of this paper is to present a finer 
model in which the heat is generated in a volume 
right under the contact interface. This model has two 
weaknesses. First it will be shown that it involves 

many parameters which are not presently all well 
known. Secondly, it is a microscopic model that can- 
not be used for macroscopic calculations without a 
high computational time. The second objective of this 
work is to present a methodology that enables the 
calculation of the two macroscopic parameters ct and 
Rsl of the macroscopic model proposed by Bardon 
from this new microscopic model. 

The paper is divided into four parts. The micro- 
scopic model is described first and applied to a par- 
ticular contact geometry. An analytical expression for 
ct and Rs~ is given; then a numerical solution is used 
to calculate the complete temperature field and the 
methodology which allows the determination of ~ and 
Rsj is developed. Finally, a sensitivity analysis of c~ 
and Rs~ to the microscopic parameters, velocity and 
thermal properties is carried out. 

2. CONTACT MODEL 

In this model it is assumed that the friction heat is 
generated within a volume underneath the real contact 
interface. This is, to our knowledge, the first time that 
such a volume heat generation is considered. 

The contact geometry, schematically represented in 
Fig. 3, studied by Vullierme et al. [18], is considered. 
This is a comprehension geometry which allows one 
to understand easily the effect of various parameters. 
The solid 2 of thickness e2 has a perfectly smooth 
surface. The surface of the solid 1 is modelized with 
periodic asperities. The spatial periodicity is 2B, the 
height and the width are equal to H and 2b, respec- 
tively. The total thickness of the solid 1 is et. The 
two solids are supposed to be infinite in the x and 
z directions. The problem is bi-dimensional and the 
periodicity allows the study of only an elementary part 
of this system. 

Based on the work of Sadhal [23], the radiation 
exchange within the cavities formed by the contacting 
asperities are neglected. The contact at the interface 
is supposed to be perfect, so the surface temperature 
asperities are equal. Actually, the contact interface is 
never perfect due to the existence of nano-asperities. 
However since they are much smaller than the micro- 
asperities which are modelized herein, they are neg- 
lected [24]. The external surfaces exchange heat by 
convection with the surroundings. Such boundary 
condition is used because, if the calculation leads to 
isothermal external surfaces, it means that the dis- 
tances e~ and e2 chosen were large enough. This is the 
best way to be sure that the perturbated zone's height 
is smaller than the studied zone's height, i.e. the heat 
flux lines are not disturbed by these boundaries. If a 
temperature or a heat flux were imposed on the exter- 
nal surfaces, we would have to take larger values of e~ 
and e2, for example e~ and e2 greater than 2B, to be 
sure not to influence the constriction resistances. The 
heat transfer coefficients and reference temperatures 
are hc~, Tinl and he2, Ti,2 for the solids 1 and 2, respec- 
tively. The cavity formed by the asperity is empty, so 
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Fig. 3. Microscopic thermal model and geometry studied. 

that there is no conductive or convective exchange in 
this region. Vullierme et al. [18] considered a cavity 
filled with grease where only conduction occurs. This 
model was used to study the sliding velocity effects on 
the thermal resistance. Experimental results were in 
good agreement with numerical results. It showed that 
the interstitial fluid has a great influence on the contact 
heat transfer, but  since it is not  our objective to study 
these phenomena in this paper, adiabatic cavity sur- 
faces are considered, i.e. Ri tends to infinity. For  sim- 
plicity and to allow the comparison between the ana- 
lytical and numerical solutions, the thermophysical 
properties of the two solids are constants. 

The relative velocity between the two solids is noted 
V. In the remainder of the paper, the solid l is con- 
sidered fixed while the solid 2 slides on it in the direc- 
tion x, with the velocity V. Herein, the friction heat, 
q~g, is not  calculated from the velocity, the contact 
area, the friction coefficient and the normal pressure. 
A nonzero value is simply taken so as to simulate a 
heat source. Heat is dissipated within the volume h* 
2b in the solid 2 underneath the contact and within 
the volume h*2b in the asperity of the solid 1. In the 
most general case, two functions, g~ and 92 are intro- 
duced to characterize the distribution of the heat gen- 
eration in each solid. In the most simple case, 9~ and 
ff2 are constant, thus a fraction 9 of the friction heat 
is dissipated in the solid 1 and the complementary part 
1-g in the solid 2. As it will be shown, 9 is different 
either from p and c~. The thermal resistance network 
that corresponds to this microscopic model is shown 
in Fig. 4a. This microscopic model involves three ther- 
mal resistances, the two lengths h~ and h 2 and the two 
heat source distribution functions 9~ and 92. 

3. ANALYTICAL DETERMINATION OF ¢ AND RSL 
The aim of this section is to obtain analytical 

expressions of the two macroscopic thermal contact 

model parameters from the previous microscopic 
model (Fig. 4a). These relations will be used to inter- 
pret the results of  the sensitivity study obtained with 
the numerical method to determine ~ and Rs]. 

3.1. Analytical expression of Rsl 
All the calculations are done for an apparent con- 

tact area of unity, i.e. a length of unity is taken in the 
z direction and 1/2B periods are considered in the x 
direction. Thus all of  the thermal resistances are in m 2 
K W  -]. 

Since the case of an infinite interstitial thermal 
resistance Ri, is considered, equation (5) reduces to : 

Rs] = Ra l  + Rcj + Re2 = Rsll + Rsl2. (7) 

According to Bardon [20], the thermal resistance 
due to solid 1 is considered as a static resistance which 
does not  depend on the sliding velocity. In previous 
studies [25, 26], it was shown that the static con- 
striction resistance varies linearly with 1/k so: 

2B 
R¢I = fcl ~11 (8) 

wheref~l is the constriction coefficient which depends 
on the geometry. Based on an electric analogy, exper- 
imental values offal were given for circular contact 
area by Bardon and Cordier [27], while Carlslaw and 
Jaeger [28] and Yovanovich [29] determined the ana- 
lytical expressions for the circular contact area case 
and for the elliptical contact area case, respectively. 

With the parameters defined (Fig. 3) and using the 
definition of the thermal contact resistance, the ther- 
mal resistance due to the asperity Ra~ can be cal- 
culated : 

Ral  = - - 1  H = f a t k  ~ .  (9) 
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Fig. 4. (a) Thermal resistance network for the new microscopic model with a volume heat generation. The 
volume generation is considered as the superposition of local surface heat generation in the solid 1 (b) and 

in the solid 1 (c). 

Using equations (8) and (9), one can write the 
expression of the thermal contact resistance due to the 
solid 1 : 

Rsll ( ~  fal \ 2 B  2B = = s ,  (lO) 

Since the solid 2 is flat: Rs]2 = R~2. According to 
Bardon [20], the sliding resistance is equal to the static 
resistance multiplied by a function of the non-dimen- 
sional sliding velocity V~2. Since the static constriction 
resistance varies linearly with 1/k, the thermal sliding 
contact resistance of the solid 2 can be expressed as : 

2B 
R,~,2 =f2  ~-2 F2(V*) • (11) 

Actually, the non-dimensional  sliding velocity is the 
Peclet number  calculated with the sliding velocity and 
the characteristic length 2B [18]:V* = 2V2B/a2. The 
spatial periodicity of the asperities, 2B, is used as 
the characteristic length even if the contact length 
2b seems to be a more important  parameter for the 
constriction resistance. As a matter of fact, machine 
part surfaces are usually ridged and the periodicity of 
the ridges is easily measured with a profilometer. On 
the other hand the length 2b, which represents the real 
contact area, depends on the mechanical properties 
and the contact pressure ; it is then much more difficult 
to obtain. The Peclet number  represents the ratio of 
the heat convected away due to the sliding motion, to 
the heat diffusion in the solid 2. F2(V*) is equal to 1 
when V* is equal to zero and tends to zero when 
tends to infinity. If V~2 is infinite, the temperature field 
in the solid 2 is one-dimensional in the y direction and 
is not  perturbated by the asperity, which implies that 
Rsl 2 equals zero. Thus, for the particular case of infinite 
velocity the total sliding contact resistance is only 
equal to the resistance induced by the static solid : 

R~(V*---> oo) = R~H. (12) 

This is in agreement with the fact that an infinite 

velocity allows the solid 2 to convect, instantaneously, 
all of  the heat away. 

3.2. Analytical expression of  ct 
If the ratio hi/2B (i = 1 and 2) is equal to zero, the 

heat flux is generated at the interface of the real area 
of contact. In this particular case, the expression of ct 
is given by equation (6). Using equations (10) and 
(11), one obtains : 

where 

A 

~ -  ( l + A k ~ )  (13) 

f, 
(L2F(V*)) (14) 

Now if a volume heat generation is considered, 
another expression for ~ that involves h~, h2, 91 and Yz 
must be found. Consider first the particular case 
shown Fig. 4b, where the heat flux is not  generated 
on the real contact interface but  locally at a certain 
distance in the solid 2. A mathematical parameter, qz 
that does not  rely on any physical considerations is 
now introduced, q2 is the ratio of the contact thermal 
resistance between the real and the fictive interfaces 
to the contact thermal resistance in the solid 2, Rsl 2. It 
is similar to equation (6) which was obtained for an 
interfacial flux generation, makes it possible to derive 
the following relation for a local internal heat flux 
generation coefficient ~2(?]2) : 

(Rsl2 -- )']2 Rsl2) 
c~2 (q2) = (15) (Rsl2 + Rsll ) 

The same consideration for the solid 1 (Fig. 4c) leads 
to: 

(Rsl2 + ~'/1 Rsll) 
a~(~h) - (Rs~2+Rs,,) ' (16) 
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Since the thermophysical properties are constant, 
the problem is linear. Thus the superposition of local 
heat fluxes (Fig. 4b and c) is equivalent to a volume 
heat flux generation (Fig. 4a) and the integration of 
equations (15) and (16) over the total friction heat 
generation volume allows the determination of c~ : 

r/m' ~0 if '  (r/')(ZI (r/l) dr/ '  

1 f'"m~ 
+ ~Tm: j0 gz (r/2)~2 (r/2) dr/z (17) 

where r/mi is the maximum value of r/i. When the flux 
is generated at the asperities surface, h~ = 0 and thus 
r/mi = 0. The maximum value of r/~i is l, which means 
that the heat flux is generated within all of the per- 
turbated temperature zone ; gi is a weighting function 
that represents the distribution of the total friction 
heat, which implies that : 

1 f~ ~1 __~ 1 I?~m2 
g, (r/,) dr/, g2(r/2) dr~2 = 1. 

r/ml r/rn2 ,)0 

(18) 

In order to simplify the analysis, it is now supposed 
that the flux is generated uniformly within the 
material, thus g~(r/l)=g and 92(r/2)= 1 - g  and 
#e  [0, 1]. 9~ and 92 can represent the real distribution 
of the friction heat if it were known. For example, if 
the adhesion phenomena is larger than the ela- 
stoplastic deformation, then 91 and if2 would decrease 
rapidly with r/l and r h, respectively. If g, and 92 are 
chosen so that the distribution of the friction heat 
follows a Gaussian curve, then this model gives the 
same macroscopic results as the one developed by 
Laraqui [21]. The integration of equation (17) gives: 

R~12 2 
o¢-- ( 1 +  Rm/ (19) 

Rsl2/ 

Finally, using equations (10), (l l) and (14), the 
desired expression of the heat generation coefficient is 
obtained : 

( a ~ + ~ )  ( 1 - ~  2)  

(1 + A ~ )  9 +  (1 +A k~ ) • (20) 

For the interfacial friction heat flux generation case, 
then r/ml = r / m 2  = 0 and equation (20) reduces to equa- 
tion (13). The analytical solution allows the com- 
parison of p, a and g. First, equation (20) shows that 
~t is a linear function ofg.  The partition coefficient is 
defined as p = ~o~/q~. An energy balance at the node 
of temperature 01 of the macroscopic model (Fig. 2c) 
leads to : 

thus 

0 2 --01 
q~l = ~q~g+ Rsj (21) 

0 2 --01 
p = 7 + - -  (22) 

Rsj (pg 

which shows that p, ct and g are completely different 
and should not be misleading. 

4. NUMERICAL SOLUTION OF THE SLIDING 
CONTACT MODEL 

A numerical solution for the calculation of the tem- 
perature fields from the microscopic model is now 
presented. This solution is not restricted, as the ana- 
lytical solution, to linear problems or simple 
geometries. Then a procedure is given to determine, 
from this numerical solution, the two macroscopic 
parameters of interest, namely ct and &l. 

4.1. Governing equations and numerical method 
The heat convected away by the sliding solid intro- 

duces a transport term in the heat diffusion equation. 
A volume source term G is used to represent the fric- 
tion heat flux. The heat diffusion equation and bound- 
ary conditions are for solids 1 and 2, respectively : 

t?Tl 02 Tl 02 T1 
p,cpl ~ - f  = k, ~y2 +k, ~-x2 +G~(x,Y) 

" OT1 
- k ~ = O  y = e l - - H ;  x~[O,2B-2b] 

dT, 
- k l ~ - x  = 0  ye]e , -H ,e , [ ;  x = 2 B - 2 b  

¢3T, 
B . C . . - k ~ - x  = 0  ye]e~--H, el]; x = 2 B  

OTj 
-k~-~-y =hc,(T,-T~nn) y = 0 ;  xe[0,2B] 

_k aT, I OWl 
~,X ~c=O = - k ,  --Ox lx=2s ye  [0,e, - H ]  

(23) 

0T2 aT2 02T2 
p2cpz ~ -  + pzcp2 V ~ x  = k2--ay2 

~2 T z 
+k2-~Z-x: +G2(x,y) 

" -k2t?T2=o y = e , ;  xe[O,2B-2b[ 
Oy 

- k z  t?T2 = h¢z(Tz-- Ti~) y = el +e2 " 
oy 

x e [O, 2B] 

= -k2y£-xl=2 s ys[e,,e,  +e2]. 8x ;=o 
(24) 

B.C., 
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The perfect contact equation and the initial con- 
dition are : 

Tl (e l , y , t )  = T2(e~,y,t) y ~ [ 2 B - 2 b , 2 B ]  

Tl(x ,y ,O) = Tz(x,y,O) = ToVxVy. (25) 

A finite differences method is used to determine 
the transient temperature field up to the steady-state 
regime. The uncondMonally stable alternative direc- 
tion implicit (ADI) scheme is employed to limit the 
computational time [30]. The classical ADI scheme 
approximation of the time derivative and the diffusion 
term are used while the transport term is approxi- 
mated with the upwind approximation. Such an 
approximation is valid for large mesh Peclet number. 

The ADI method had to be adapted to take into 
account the periodicity of the system. The two classi- 
cal steps of the ADI method are thus shortly 
described. 

First step. The intermediate temperature field T k+ ~/2 
is computed with an explicit approximation for the 
heat flux in the y direction and with implicit approxi- 
mation for all other terms. For Jl + 1 ~<j ~< J2-1,  it 
gives a classical tridiagonal system which can be 
solved with the Choleski (also called Thomas) method 
[31]. For 1 <<-J<~Jl and j2<~j<<.j~, the periodicity 
implies the continuity of heat flux densities. It gives 
rise to a tridiagonal matrix with two supplementary 
terms equation (26). To avoid the use of an iterative 
method, this system is split into two tridiagonal sub- 
systems of dimension ( i , -  1) which can be solved as 
usual. This maintains the advantages of the ADI 
method. 

-bj cj 0 0 dl 

a2 0 

0 

0 

0 ci,- 1 

d2 0 0 ai,, b~, 

Tk+ 1 / 2  
a l  d 

I 

Tk+ 1/2 
_ / n j  

-yl 1 

_y~J 

(26) 

Second step. The temperature field T k+l is computed 
with an explicit approximation for the heat flux in the 
x direction and implicit approximation for the other 
terms. Due to the presence of the cavity, when 
1 ~< i ~< il - 1, one tridiagonal system must be solved 
for each solid. 

4.2. Validation and results 
The computer program has been validated by two 

means. First, a comparison of the temperature field 
for a zero velocity case was done with a commercial 
finite element code. Then for non-zero velocities, the 
heat balance for the steady-state regime was checked. 
For this study, only :~teady-state results are of interest. 
The influence of the convective term is shown on the 
following test case : 

2 B = 0 . 6 m m ;  2 b = 0 . 1 m m ;  el = 0 . 5 m m ;  

e z = 0 . 4 m m ;  H = 0 . 1 m m ;  

hi/2B = hz/2B = 0.09166; 

h~l = h o 2 = 1 0 0 W m - 2 K  - l ;  T i n l = T i , 2 = 0 ;  

g = O . 5 ; k ~ / k 2 = l ;  q~g=18333.33Wm -z. 

Figures 5 and 6 show the steady-state temperature 
fields for non-dimensional sliding velocities V* equal 
to 0 and 60, respectively. The total friction heat is 
considered constant to better show the influence of 
the convective term. An increase of the velocity tends 
to uniformize the temperature in the x direction in the 
solid 2, while the solid 1 temperature field is only 
slightly changed. Note that the temperatures for y = 0 
and y = eL + e2 do not vary with x. This means that el 
and ez are big enough, i.e. the zone perturbated by the 
contact is completely included in the studied volume. 

4.3. Determination o f  ct and R~t 
It is now shown how the two macroscopic par- 

ameters ~ and Rsl, that were determined analytically, 
can be calculated from the numerical solution of the 
microscopic model. 

Equation (21) can be recast to get the expression of ct: 

~ =  ¢p, ~ j (27) 

where 01 and 02 are the extrapolated temperatures at the 
geometrical interface. An expression of /~  can be 
obtained from this equation if the imaginary case of a 
non-zero velocity, but with no friction heat, is considered: 

0 0_0  o 
Rst = - -  (28) 

q~l 

For linear problems the values of ~ and Rs~ are 
constants, they only depend on the material properties 
and contact geometry. Thus, it is possible to determine 
the two parameters from equations (27) and (28) if 
the four extrapolated temperatures at the geometrical 
interface, 01, 0z, 0 ° and 0 ° are known. For a given 
geometry, sliding velocity and heat generation par- 
ameters, the numerical model is used to compute the 
steady-state temperature field. From the external sur- 
face temperatures T1 and T~ and the external surface 
heat flux densities ¢pl and qh, it is possible to calculate 
the extrapolated temperatures (Fig. 1) at the geo- 
metrical interface 0~ and 02 : 

ei 
0 i =  Ti+q~i~ i =  l o r 2 .  (29) 

Thus the numerical determination of ~t and R,~ is 
very simple since it only requires two independent 
runs of the computer program. The first one with 
~og = 0 to calculate 0 ° and 02 °, the second one with the 
same parameters but with tog ~ 0 to calculate 01 and 
02. 
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Fig. 5. Solids temperature field for a static contact : V* = 0. 

5. NUMERICAL RESULTS 

The methodology proposed above for the numerical 
estimation of :t and R~l is now used to perform a 
sensitivity analysis and is qualitatively validated with 
the results of the analytical solution. 

5.1. Results for the thermal sliding contact resistances 
Influence of geometry and non-dimensional sliding 

velocity. The three geometries given in Table 1 are 
studied. The spaeial periodicity 2B is the same for the 
three geometries. The effect of the contact length and 
the height of the asperity is studied. For the three 
cases, the variations of Rsl vs V2* are shown (Fig. 7). 
It shows that Rsl reaches its asymptotic value when 
V* is around 120. Thus, according to equation (12), 
Rsn = R~I(V* = 120). From this result and equation 
(7), Rs~2 is determined as a function of the non-dimen- 
sional sliding speed. As expected from equation (12), 
Rs~z tends to zero when V* tends to infinity. The values 
of Rsn, which does not depend on the sliding speed, 
are given in Table 1 for each geometry. 

The real contact area for the geometry GE2 is bigger 
than for the geometry GEl.  The heat flux line con- 
strictions are then less important which explains that 
RsII(GE1) > Rm(GE2). Similarly, the height of the 
asperity is smaller for the geometry GE3 than for the 
geometry GEl,  thus Rm(GE1) > Rm(GE3). On the 

other hand, for GEl and GE3 the contact area is the 
same which leads to the same constriction in the solid 
2 for both cases, consequently Rs~2(GE1) = Rs~z(GE3). 
it is logical to find that Rsl2 does not depend on the 
height of the asperity. 

Influence of  thermophysical properties. To limit the 
computational time, another set of geometrical par- 
ameters has been used in this part. The following 
geometry was studied: 2B = 1.5 mm, 2b = 0.5 mm, 
H = 0.5 mm, et = ez = 2 mm. The results showed that 
Rs, does not depend on p~cpl, k2 and p2cp2 and that 
Rs~2 does not depend on plcpl and k~. Figure 8 shows 
that the variation of Rsn (respectively, Rsl2) vs l/k~ 
(respectively, l/k2) is linear, which is in good agree- 
ment with equation (10) (respectively, equation (11) ). 
Note that for Rs~2 the non-dimensional sliding speed 
is maintained constant while p2cp2 and k 2 vary, thus 
the thermal resistance in the solid 2 depends indirectly 
on p2cp2 and its variation function of 1/k2 is not strictly 
linear. Figure 8 confirms that Rs~: decreases when the 
sliding velocity increases, the changes being par- 
ticularly important for small values of the conduc- 
tivity. 

5.2. Results for the heat f lux generation coefficient 
Influence of  geometry and non-dimensional sliding 

velocity. Three sets of simulation were realized, each 
one corresponding to the geometry GEl ,  GE2 and 
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Fig. 6. Solids temperature field for V* = 60. 

Table 1. Value of Rs, l for different geometries (2B = 0.6 mm) ~ 0.8 -- Rsl I • Rsl2: V* = 0 

- - .0--  Rsl2:  V*  ffi 30  
GEl GE2 GE3 y - - 'P-  RsI2: V* -- 60 

0 . 6 -  ," 
H/2B 1/6 1/6 1/12 ~ / f f  
Rs~11000 0.8213 0.5303 0.6249 
(m2KW -1) x / /  

. . . .  oo 0 . 4 -  ~ /  

= 

- - - - - -  Rsl  " G E l  .~  0 .2  --  / 1 /  
• GE 2 ~ / 

t.o'['~,,, ~ o.o , ~ ~ ~ - - - - ~ ' ~ ' 1  I 
~ _  ~ ~" "I.-- _ - 0 .0  0 .2  0 .4  0 .6  0 .8  

0 .8  " t -  . . . . . . . .  --m 
| . , +  l /k  [m K W -I]  

I . -~ ~ " ~  - - _ ~ . . . . . . .  ~ Fig. 8. Thermal contact resistance in the solid 1 (static solid) 
0 .61 - -  o, _ - o -  - and in the solid 2 (sliding solid) vs 1/k~ and l/k:, respectively. 

8 / - - - ' *  . . . . . . . . .  4 

0 .4  

GE3.  F o r  these  s imula t ions ,  # = 0.25 and  
~ 0.2 h/2B = 1/11. T h e  va r ia t ions  o f  e vs V* is s h o w n  (Fig.  

9). A c c o r d i n g  to  its analyt ica l  de t e rmi na t i on ,  equa t i on  

0 .0  ~ (19), c< d e p e n d s  on  the  t he rma l  res is tance  ra t io  
0 20 40 60 80 100 120 Rsll/Rs12. F o r  the  geome t ry  G E 2 ,  the  t he rma l  resist-  

V* ances  R , ,  a n d  Rsl2 are  smal ler  t h a n  for  the  geome t ry  
G E l  bu t  the  ra t io  is near ly  cons t an t ,  so the  curves  Fig. 7. Total thermal sliding contact resistance and thermal 

sliding contact resistance in the solid 2 for the three geo- are  a lmos t  identical .  F o r  the  g e o m e t r y  G E 3 ,  Rsl 1 is 
mettles GEl ,  GE2, GE3. smaller ,  b u t  R~l 2 is the  same,  so the  ra t io  is Rsil/Rsl2. 
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0.4 F t GE I 

| • GE 2 

- -÷ - -  G E  3 
0.3 

0 . 2  

O.1 

O.O i I 
0 15  3 0  4 5  6 0  

V* 
Fig. 9. Heat generation coefficient for the three geometries 

GEl, GE2, GE3. 

This ratio appears in the numerator  and denominator  
of  equation (19), but is multiplied by a number less 
than one in the numerator  (ffqml/2), SO at is bigger for 
the geometry GE3. The same reasoning explains the 
variation of  ct with the non-dimensional sliding speed : 
if  ~ increases, Rs,2 becomes smaller, but Rs~i remains 
the same, equation (10), so the ratio R~I/Rsj2 is bigger 
and at decreases. The same trends were obtained for 
g = 0.5 and g = 0.75, but as shown below, the value 
of  at depends on 9- 

Influence o f friction heat dissipation parameters. Fig- 
ure 10 shows, for the geometry G E l ,  the variations of  
at v sg  for different values of  V2* and h/2B(hl = hz = h). 
The variation of  at vs g is linear ; the slope of  the line 
increases with h/2B and the ordinate at the origin 
decreases when V* increases. These results are con- 
sistent with equation (20) (t/m, and t/m 2 get larger when 
h/2B increases). As shown in Fig. 11, the variation of  
at with h/2B depends on g, for small values of  g, at 
barely varies with h/2B. I f  # is big enough, at always 
increases with h/2B and the variation seems to be 
linear. 

Influence of thermophysical properties. The 
geometry used to study the influence of  the ther- 
mophysical properties on Rsll and Rs~2 was also used 
in this part. A set of  simulations showed that at does 
not  depend on picpi. It varies indirectly with p2cp2 
through V*. The variations of  at vs h/2B (hi = h2 = h )  

for different values of  k~/k2 are shown in Fig. 12 for 
V* = 30 and 9 = 0.5. It is clear that the conductivity 
ratio has a strong influence on the parameter at. Sur- 
prisingly, there is for this case, a value of  h/2B for 
which at does not  depend on ki/k2. The values of  at for 
h/2B = 0 have been calculated using values of  Rs,, 
and Rsl2 obtained from the numerical model  and the 
equation (15) derived from the macroscopic model  
when the friction heat is generated only at the contact 
interface. These values are in very good agreement 

0.5 - -  

0 . 4 - -  

0 . 3 - -  

0 . 2 - -  

0 . 1  - -  

0 . 0  

0 . 4 - -  

0 . 3  - -  

0 . 2 -  

0 . ]  - -  

0 . 0  

0 . 4  - 

0 . 3  - 

0 . 2  - 

0 . ]  - 

0 . 0  
0.00 

h / 2 B  = 1124  

h / 2 B  = 1111 

--&-- V:~ = 0 
h / 2 B  = 117 

* - - - 1 5  - - O - -  V 2 

- - = - -  V~ = 30 

I I I 

0.25 0.50 0.75 

g 

Fig. 10. Heat generation coefficient for various sliding vel- 
ocities and ratios h/2B. 

with the limits of  the curves when h/2B tends towards 
zero. 

6. CONCLUSIONS 

A sliding thermal contact model that accounts for 
a volume generation of  the friction heat has been 
proposed. This model  is based on a microscopic analy- 
sis of  the heat transfer and heat generation occurring 
around the contact  interface. A numerical procedure 
that allows one to determine, f rom this microscopic 
model, the two parameters of  the most established 
thermal macroscopic model has been developed. This 
procedure has been qualitatively validated with an 
analytical solution for the case of  a simple contact 
geometry. However,  if  a more realistic contact 
geometry with three-dimensional effects and heat 
transfer within the contact  cavities were considered, 
then the procedure would still allow one to estimate 
the macroscopic parameters. It would only require a 
more powerful numerical code. 

Far  enough from the interface where the tem- 
perature field is not  perturbated by the asperities, the 
results of  the microscopic and macroscopic models 
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0.4 - -  

0 . 3  - -  

0 . 2  - -  

0 . 1  - -  

0 . 0  

0 . 5  - -  

0 . 4  - -  

0 . 3  - -  
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t 

t V ~ =  0 
g = 0.2:5 

• V ~  = 15 

• V ~  = 3 0  

*-  6 0  --4-- V 2 - 

t ~ t  

4--- ~ i 

I I I I I 

0.03 0.06 0.09 0.12 0.15 

h / 2 B  

Fig. 11. Heat generation coefficient for various sliding vel- 
ocities and fractions g. 

0 . 3  D 
---as-- Analytical solution 

---e-- kl/k 2 = 10 
--=--- ki/k 2 = 2 
-'t.-- kl/k 2 = I . . i t .  

0.2 - -  - - 4 - - -  kl/k 2 = 0. j , , , ~  

"4 Y 0.1 ~ 

0.0 I I I 
0 . 0  0 . 1  0 . 2  0 . 3  

h / 2 B  

Fig. 12. Heat generation coefficient for various conductivity 
ratios kl/k2. 

agree well. It proves that a simple macroscopic model  
can be used to couple the two solids as long as the 
temperature variations in the perturbed zone are not  
of  interest. This is true, for example, for large scale 
engineering problems. However,  it requires that the 
parameters ct and Rs~ are known. 

This work showed that ct depends greatly on the 
heat generation distribution in the two solids in the 
vicinity of  the contact  interface. The influences of  the 
velocity and the geometry of  the asperity on ~ and Rsl 
have also been shown. For  Rs~, the same qualitative 
variations were found as in the experimental study of  
Vullierme et al. [18]. These trends may not be similar 
for other contact geometries. The analytical solution, 
even restricted to simple geometries, is very useful in 
determining the main variations of  ct and R,~ as a 
function of  the many contact parameters. As a matter  
of  fact, it is quite difficult to a priori predict the 
behavior of  the macroscopic parameters. 

Presently, ~ and Rs~ can be determined either exper- 
imentally or numerically. The former solution will 
only allow estimation of  the parameters for some spec- 
ific contact conditions (geometry, material properties, 
pressure and velocity). On the other hand, the pro- 
cedure that has been proposed in this paper allows, 
for any contact geometry and friction heat distri- 
bution, the calculation of  the two parameters, but it 
involves friction heat microscopic parameters which 
are yet unknown. Thus, it emphasizes the need of  
pursuing research, either experimental (with atomic 
force microscope for example) or  computat ional  
(mechanical calculations with a Lagrangian 
approach),  to determine precisely how and where 
friction is dissipated. 
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